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Abstract 

Sr2Mg3H10 and its deuteride were prepared from SrMg2 alloy at 700 K under 75 bar hydrogen (65 bar deuterium) 
pressure and characterized by X-ray and neutron powder diffraction. They crystallize with the monoclinic Ba2Ni3F20 
structure type in space group C2/m (No. ° 12), with the following cell parameters at 295 K: a =17.586(5) A, 
b = 5.742(2) ~ ,  c = 7.491(2)/~, ;3= 111.51(2), V= 703.8(2)/~3 (hydride); a = 17.539(4)/~, b = 5.730(1),/~, c = 7.480(2) 
~ ,  ;3=111.48(2) °, V=699.5(2) /~3 (deuteride); Z = 4 .  The metal-deuterium bond distances range from 1.81 to 
2.14 /~ (Mg-D) and from 2.49 to 2.96 /~ (Sr-D). 

1. Introduction 

During our work on SrMgH4 [1] we found evidence 
for the existence of a second ternary phase in the 
Sr-Mg-H system, which was formed by hydrogenation 
of SrMg alloys with Sr:Mg < 2:3. In this paper we present 
the synthesis and crystal structure of this compound, 
namely Sr2Mg3Hlo. Like SrMgH4, it crystallizes with a 
structure type found in ternary fluorides. 

2. Experimental details 

2.1. Synthesis 
SrMg2 alloys were prepared by arc melting 1:2 mix- 

1 
tures of the elements (Sr, Alfa, 99%; Mg, Cerac, 5 in, 
99.99%). The ingots were powdered under argon and 
hydrogenated in a high-temperature, high-pressure au- 
toclave for 6 days at 703(5) K, (693(5) K) and 75(5) 
bar hydrogen (65(5) bar deuterium) pressure. Alloys 
with a higher Sr:Mg ratio led to products with a higher 
content of SrMgH4. The final products are light grey. 
Because of its sensitivity to air, the thermal stability 
of Sr2Mg3H~o could not be determined. However, the 
conditions of synthesis indicate that it is more stable 
than MgH2, but less stable than SrMgH4. 

*Author to whom correspondence should be addressed. 

2.2. X-ray diffraction 
The hydride and deuteride samples were character- 

ized by X-ray powder diffraction at room temperature 
(Huber 645 Guinier diffractometer [2], Cu Koq radiation, 
internal standard Si, NBS 640 a). The patterns were 
indexed with DICVOL91 [3] to  a monoclinic C-centred 
cell (refined cell parameters: a = 17.586(5) /~, 
b=5.742(2)/~, c=7.491(2) ~,/3---111.51(2) ° (hydride); 
a=17.539(4) /~, b=5.730(1) /~, c=7.480(2) /~, 
/3= 111.48(2) ° (deuteride)). The metal atom substruc- 
ture was solved in space group C2/m [4] using direct 
methods (programme SHELXS-86 [5]). A preliminary 
structure refinement was performed on diffractometer 
data by using the programme OBWS-9006PC [6]. The 
consistency factors were RB = 10.4%, Rwp = 13.9% and 
S=2.39 for the hydride and RB=7.4%, Rwp =13.0% 
and S---2.03 for the deuteride. 

2.3. Neutron diffraction 
The hydrogen positions were determined from neu- 

tron powder diffraction data of a deuterated sample 
measured on the DMC diffractometer [7] at the reactor 
SAPHIR, PSI Villigen (Ge (311) monochromator, 
A = 1.6984/~, 20 range 3.0°-134.8 °, step size A(20) = 0.1 °, 
(sin 8/A)max=0.544 /~-1, T=293 K). The sample (5.5 
g) was enclosed in a cylindrical vanadium container of 
9 mm inner diameter and measured in high-resolution 
mode. The transmission factor was measured 
(/~R=0.147) and the data were corrected accordingly. 
For the structure refinement the F atom coordinates 
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TABLE 1. Refinement results on neutron powder diffraction 
data for Sr2MgaDt0 (T= 295 K; estimated standard deviations in 
parentheses) 

Atom Site x y z Ui~o 
(X10 -2 A 2) 

Srl 4(i) 0.2831(6) 0 0.690(1) 0.2(1) 
Sr2 4(i) 0.3826(7) 0 0.283(1) Us,, 
Mgl 4(0 0.0757(?) 0 0.438(2) 0.5(1) 
Mg2 4(i) 0.1710(9) 0 0.023(2) UM,t 
Mg3 4(g) 0 0.260(2) 0 UMs, 
D1 8(/) 0.1118(5) 0.269(1) 0.024(1) 2.42(9) 
D2 8(/) 0.1532(4) 0.246(2) 0.486(1) UDI 
D3 4(i) 0.0223(8) 0 0.180(2) UDx 
D4 4(0 0.1361(7) 0 0.743(2) urn 
D5 4(i) 0.2373(8) 0 0.281(2) Up1 
D6 4(i) 0.5150(8) 0 0.181(2) UDx 

1 Um D7 4(h) 0 0.231(2) ~- 
i 0 Um D8 4(e) -~ 

Space group C2/m (No. 12). 
Cell parameters a=17.539(4) A, b=5.730(1) A, c=7.480(2) A, 
13= 111.48(2)*, V=699.5(2) A 3, Z=4.  
Ra =~ 4.4%, Rr = 2.9%, Rw= 3.8%, S= 1.94 for 541 reflections. 
Form of the temperature factor: T= exp[-  8"n'2Uiso(sin20/A2)]. 

rameters were allowed to vary: four scale factors, the 
0 zero position, six background parameters, four peak 
shape parameters, 11 cell parameters (Sr2Mg3D~o, four; 
MgD2, two; SrMgD4, three; Mg, two), three thermal 
displacement parameters and 24 positional parameters 
for Sr2Mg3D~o. Scattering lengths (bs,=7.02 fm, 
bMg = 5.375 fan, bD = 6.674 fm) were taken from ref. 10. 
The results are summarized in Table 1; the atomic 
coordinates are standardized [11]. The observed, cal- 
culated and difference neutron patterns are shown in 
Fig. 1. 

3. Results  and d i scuss ion  

Sr2Mg3Dlo crystallizes with the Ba2Ni3Flo structure 
type [8]. The structure (Fig. 2) contains three symmetry- 
independent Mg atoms, all of them with slightly distorted 
octahedral deuterium coordination, and two Sr atoms, 
both with coordination number 12 (see below). The 
Mg3-centred MgD6 octahedra are connected via edges 
to rutile-type chains parallel to the b axis. The Mg2- 
centred octahedra are connected via corners to zigzag 2ol 
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Fig. l. Observed (top), calculated (middle)and difference (bottom) 
neutron powder patterns of Sr2Mg3D10, containing MgD2, S r M g D 4  

and Mg impurity phases (A 1.6984 ,~). 

of Ba2Ni3Flo [8] were taken as a first model for the 
deuterium positions. The structures of four phases were 
refined: monoclinic Sr2MgaD10, i g D 2  [9] and traces of 
SrMgD4 [1] and unreacted Mg. The following 53 pa- 
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Fig. 2. Projections of Sr2MgaDx o (a) along the c axis and (b) 
along the b axis: open circles, Srl; filled circles, Sr2; Mg-centred 
octahedra -- light, Mgl; medium, Mg2; dark, Mg3. 
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TABLE 2. Selected interatomic distances (angstroms) shorter 
than 3 /~ for Sr2Mg3Dlo (estimated standard deviations in pa- 
rentheses) 

Srl-2 D2 2.49(1) D1- Mg2 1.86(1) 
2 D1 2.617(9) Mg3 1.903(9) 
2 D2 2.64(1) Srl 2.617(9) 

D4 2.75(2) Sr2 2.69(1) 

D5 2.87(2) D2- Mgl 1.90(1) 
2 D5 2.905(3) Srl 2.49(1) 
2 D8 2.961(8) Sr2 2.51(1) 

Sr2-2 D2 2.51(2) Srl 2.64(1) 

D5 2.54(2) D3- Mgl 1.81(2) 
2 D7 2.61(2) 2 Mg3 1.95(1) 
2 D1 2.69(1) 

D6 2.70(2) D4-- Mg2 1.96(2) 
2 D4 2.882(2) Mgl 2.14(2) 
2 D8 2.889(7) Srl 2.75(2) 

2 Sr2 2.882(2) 
Mgl-  D3 1.81(2) 

2 D2 1.90(1) D5- Mg2 1.86(2) 
2 D7 2.05(3) Sr2 2.54(2) 

D4 2.14(2) Srl 2.87(2) 
2 Srl 2.905(3) 

Mg2- D5 1.86(2) 
2 D1 1.86(1) D6-2 mg3 1.88(1) 

D4 1.96(2) Sr2 2.70(2) 

2 D8 2.04(1) D7-2 Mgl 2.05(3) 
Mg3-2 D6 1.88(1) 2 Sr2 2.61(2) 

2 D1 1.903(9) D8-2 Mg2 2.04(1) 
2 D3 1.95(1) 2 Sr2 2.889(7) 

2 Srl 2.961(8) 

chains in the ab plane, which interconnect two rutile- 
type chains. The slabs formed by these two types of 
chains are linked together by pairs of edge-sharing 
Mgl-centred octahedra. The Sr atoms are located in 
the cavities of this three-dimensional network and have 
cuboctahedral (Sr2) and twinned cuboctahedral (Srl) 
deuterium coordination. The eight symmetry-indepen- 
dent deuterium sites are coordinated as follows: tri- 
angular (D3 [3 Mg]), octahedral with three short dis- 
tances (D6 [Sr, 2 Mg]), tetrahedral (D1, D7 [2 Sr, 2 
Mg], D2 [3 Sr, Mg]), square pyramidal (D4 [3 Sr, 2 
Mg], D5 [4 Sr, Mg]) and octahedral (D8 [4 Sr, 2 Mg]). 
The metal-deuterium bond distances (Table 2) range 

from 1.81 to 2.14/~ (Mg-D) and from 2.49 to 2.96/~ 
(Sr-D) and are similar to those found in SrMgD4 [1], 
SrD2 [12] and MgD2 [9]. The shortest D-D distance 
is 2.49 /~. 

SrzMg3Dlo is one more example of the structural 
analogy that exists between hydrides and fluorides [13, 
14]. 
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